The Milky Way is blowing a star-forming bubble, and we’re in the middle of it.
Star formation in the 500 light-years around Earth is being driven by a cosmic bubble known as the Local bubble, as seen in this artist's concept.
Think “bubbles,” and you may think “soap” or “gum.”
But not Catherine Zucker, currently a Hubble Fellow at the Space Telescope Science Institute and a former researcher with the Harvard-Smithsonian Center for Astrophysics. Zucker’s interest in bubbles is cosmic. And she and her collaborators have found new insights about a bubble in which our solar system sits.
Astronomers have long known about the 1,000-light-year-wide Local Bubble. In a new paper published Jan. 12 in Nature, Zucker and her co-authors describe it as “a cavity of low-density, high-temperature plasma surrounded by a shell of cold, neutral gas and dust.” But for years, astronomers were in the dark beyond that. The history of the Local Bubble, even its size, remained unknown.
Not anymore. Zucker and her team became accidental historians when, starting work on a different project, they found instead a kind of creation story of our local stellar neighborhood, and provided robust confirmation of the assumption that supernovae — the explosions of dying stars — lead to the birth of other stars. This happens when the blown-out materials recombine elsewhere due to the force of gravity.
Bubbly beginnings
What Zucker’s team found, according to their paper,
was “that nearly all of the star-forming complexes in the solar vicinity lie on
the surface of the Local Bubble and that their young stars show outward
expansion mainly perpendicular to the bubble’s surface.” She calls it a “eureka
moment.”
In other words, the young stars in our galactic neighborhood are almost all due to the expansive shock waves of a series of supernovae and that process of blown-out remains recombining to birth new suns and new solar systems. The bubble - which is actually shaped more like a piece of pipe cutting through the plane of the Milky Way – seems to have formed 14 million years ago from some 15 supernovae, and the triggered star formation that is still happening today.
The last such supernova took place about 2 million years ago, according to Zucker’s research — a finding that matches nicely with the previously reported deposition of cosmic iron in the Earth’s crust.
Zucker presented her team’s work virtually this week at a drastically scaled-back gathering of the American Astronomical Society, which was to have met in-person in Salt Lake City. The ongoing COVID-19 pandemic upended those plans.
Zucker told Astronomy that while there are “tens of millions of ‘old’ stars [those that are more than 14 million years old] inside the Local Bubble,” there are “on the order of thousands of ‘young’ stars … on its surface that have been birthed by the supernovae.”
It just happens that the Sun and our solar system currently sit inside this bubble. According to the team, the Sun rolled into the Local Bubble about 5 million years ago — but it likely sat in other bubbles at other times.
“This work is most useful for providing the ‘big picture’ context for star and planet formation,” Zucker says. “One takeaway that might have been missed is that this study is really the tip of the iceberg. The Local Bubble is just the first bubble whose history we have mapped out — it's the easiest one to understand first, since it's the bubble in which our Sun currently resides. However, we have clues that not just single superbubbles, but the interactions of many superbubbles, are driving the formation of young stars near our Sun.”
Zucker compares the process to plowing snow. If one or more superbubbles is “piling up gas in the same region of space … we should get even more enhanced star formation at those intersecting surfaces.” And, in fact, one such bubble, called Perseus-Taurus, is interacting with our Local Bubble “at the site of the Taurus molecular cloud” — home to known protoplanetary disks.
The European Space Agency’s Gaia star-mapping mission was crucial in providing the precise data needed to discover the star-formation nuances of the Local Bubble — what Zucker has been calling an “origin story.”
Luckily, you don’t need access to high-end data to connect to this work. “The two clusters of stars that hosted the supernovae are still around and they are about 15 to 16 million years old,” says Zucker. “They currently lie near the edge of the Local Bubble's shell.” (At the time, the supernovae were getting underway, these clusters were in the thick of the action.)
You can point your telescope toward those local star-forming regions. One is in Taurus, the other is in Ophiuchus, home of the Ophiuchus Nebula. Looking into those areas gives you a chance to bear witness to the history and continuance of star birth in our Local Bubble.
Interested readers can also find cool data
visualizations and more information at the team’s
0 Comments